【PPT干货】全面解读大数据驱动的京东供应链体系


1销量预测

京东仓储设备

京东有118个大型仓库,占地面积230万,两千多个陪送站,一千多个自提点,覆盖1855县区,合作伙伴六千家。

 

需求管理

在供应链和库存管理里面核心的就是需求管理。而需求管理在大数据需求下,需求预测成为大的核心。

通过大数据来做需求预测,能做到自动补货、自动调拨、整体库存分析、SKU备货等,做到在用户下单之前就将商品送到近的仓库。


产品预测

通过大数据来确定:用户购买商品、采购商品、预算价格、过程中补货、和库存管理里面核心的就是需求管理。而需求管理在大数据需求下,需求预测成为大的核心。

通过大数据来做需求预测,能做到自动补货、自动调拨、整体库存分析、SKU备货等,做到在用户下单之前就将商品送到近的仓库。

京东目前能做到:通过28天预测值,预测每一个sku未来量并驱动RDC与FDC的调拨和补货,保证商品量和限购率、人工智能来预测仓。

预测模型

由京东十几年的销售数据,再结合季节的变化、人均销售、促销因素来建立,同时再算法来预测未来的趋势,确定SKU的量及未来销售的量。

 


数据清洗

对于新品模型、保守模型、不动销模型、决策树模型、月均价格模型、市场需求回归模型等,均是由趋势跟随价格模型来预测整体销售情况。在这些过程中,必须要注意数据清洗。而在数据清洗的过程中凡是价格变动引起的因素,都需将整个模型进行清洗和过滤。
2自动补货

补货模型

 

 

补货模型包括阶段性的补货与时间的匹配,保证库存不是一个大的值而是一个合理的值。

用补货点与安全库存点的逻辑关系来驱动整个补货效率的提升。

 

在补货的过程中纳入成本模型,只有在成本模型的驱动下,整个销售预测和模型才会更效。


3健康库存


库存健康系统

库存健康模拟产品未来的一个的时间点,提前做出滞销、降价、退货等处理。补货模型包括阶段性的补货与时间的匹配,保证库存不是一个大的值而是一个合理的值。

用补货点与安全库存点的逻辑关系来驱动整个补货效率的提升。

在补货的过程中纳入成本模型,只有在成本模型的驱动下,整个销售预测和模型才会更效。


4供应商罗盘

供应链及供应商

供应链能力:与供应商沟通,将京东的补货建议、库存建议发给供应商,一起做得更好。

供应商罗盘:告诉供应商在哪个结点应该降价,配合降价应该做的补货,商品未来周期的分析并参与京东的促销和补货。

 

5智慧选品

选品模型

商品未来的采购量是根据大数据下的行业报告、行业分析、用户模型和价值来预测的,并在未来某个时间点上,按照一些商品在整个过程中的定位,来做选品的工作。

在大数据驱动下,友商商品数据、京东商品数据、行业报告数据、基于大数据预知处消费者的趋势和采购量。

 


6智慧定价

定价的过程考虑大利润化、限货和库存周转过程、以及库存和处理滞销过程。

采销可以根据定价看到商品毛利率,价格变动后的流量变化,库存周转情况以及风控平台来检验价格定位是否准确

(来源:JDTech:编选:中国电子商务研究中心

责任编辑:文潔

欧界科技|O2OJIE,O2O企业服务领导品牌,提供餐饮、零售O2O全套解决方案,软硬件整体实施,品牌运营和推广,直达主力核心用户!

欧界科技 cy.o2ojie.com